Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
...and detection of large phosphoproteins using Phos-tag SDS...188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线

...and detection of large phosphoproteins using Phos-tag SDS...

AbstractWe provide a standard phosphate-affinity SDS-PAGE (Mn2+鈥揚hos-tag SDS-PAGE) protocol, in which Phos-tag is used to analyze large phosphoproteins with molecular masses of more than 200 kDa. A previous protocol required a long electrophoresis time of 12 h for separation of phosphoisotypes of large proteins (鈭?/span>150 kDa). This protocol, which uses a 3% (wt/vol) polyacrylamide gel strengthened with 0.5% (wt/vol) agarose, permits the separation of protein phosphoisotypes larger than 200 kDa within 2 h. In subsequent immunoblotting, phosphoisotypes of high-molecular-mass proteins, such as mammalian target of rapamycin (289 kDa), ataxia telangiectasia-mutated kinase (350 kDa) and p53-binding protein 1 (213 kDa), can be clearly detected as up-shifted migration bands on the improved Mn2+鈥揚hos-tag SDS-PAGE gel. The procedure from the beginning of gel preparation to the end of electrophoresis requires about 4 h in this protocol. Subscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comRent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices. Figure 1: Phosphate-affinity Mn2+-Phos-tag SDS-PAGE for the mobility-shift detection of phosphoproteins.Figure 2: Schematic representation of the relationship between the degree of migration (Rf value) and molecular weight for several proteins (200鈥?50 kDa) in 2.7鈥?.5% (wt/vol) polyacrylamide slab gels.Figure 3: Separation and detection of the phosphoisotypes of mTOR.Figure 4: Phosphorylation of DNA damage signaling-related proteins in HeLa cells treated with actinomycin D. References1Hunter, T. Signaling鈥?000 and beyond. Cell 100, 113鈥?27 (2000).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 2Manning, G., Whyte, D.B., Martinez, R., Hunter, T. Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912鈥?934 (2002).CAS聽 Article聽Google Scholar聽 3Johnson, S.A. Hunter, T. Kinomics: methods for deciphering the kinome. Nat. Methods 2, 17鈥?5 (2005).CAS聽 Article聽Google Scholar聽 4Cohen, P. Protein kinase鈥攖he major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309鈥?15 (2002).CAS聽 Article聽Google Scholar聽 5Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680鈥?85 (1970).CAS聽 Article聽Google Scholar聽 6Steinberg, T.H. et al. Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3, 1128鈥?144 (2003).CAS聽 Article聽Google Scholar聽 7Goodman, T., Schulenberg, B., Steinberg, T.H. Patton, W.F. Detection of phosphoproteins on electroblot membranes using a small-molecule organic fluorophore. Electrophoresis 25, 2533鈥?538 (2004).CAS聽 Article聽Google Scholar聽 8Inoue, S. et al. Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc. Natl. Acad. Sci. USA 105, 5626鈥?631 (2008).CAS聽 Article聽Google Scholar聽 9Barbieri, C.M. Stock, A.M. Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Anal. Biochem. 376, 73鈥?2 (2008).CAS聽 Article聽Google Scholar聽 10Mukai, N., Nakanishi, T., Shimizu, A., Takubo, T. Ikeda, T. Identification of phosphotyrosyl proteins in vitreous humours of patients with vitreoretinal diseases by sodium dodecyl sulphate-polyacrylamide gel electrophoresis/western blotting/matrix-assisted laser desorption time-of-flight mass spectrometry. Ann. Clin. Biochem. 45, 307鈥?12 (2008).CAS聽 Article聽Google Scholar聽 11Das, S., Wong, R., Rajapakse, N., Murphy, E. Steenbergen, C. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ. Res. 103, 983鈥?91 (2008).CAS聽 Article聽Google Scholar聽 12Aponte, A.M. et al. Use of 32P to study dynamics of the mitochondrial phosphoproteome. J. Proteome Res. 8, 2679鈥?695 (2009).CAS聽 Article聽Google Scholar聽 13Lee, B.S., Lasanthi, G.D., Jayathilaka, G.D., Huang, J.S. Gupta, S. Immobilized metal affinity electrophoresis: a novel method of capturing phosphoproteins by electrophoresis. J. Biomol. Tech. 19, 106鈥?08 (2008).PubMed聽 PubMed Central聽Google Scholar聽 14Lee, B.S. et al. Modification of the immobilized metal affinity electrophoresis using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Electrophoresis 29, 3160鈥?163 (2008).CAS聽 Article聽Google Scholar聽 15Kinoshita, E., Takahashi, M., Takeda, H., Shiro, M. Koike, T Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans. 1189鈥?193 (2004).16Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. Koike, T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749鈥?57 (2006).CAS聽 Article聽Google Scholar聽 17Kinoshita-Kikuta, E., Aoki, Y., Kinoshita, E. Koike, T. Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol. Cell. Proteomics 6, 356鈥?66 (2007).CAS聽 Article聽Google Scholar聽 18Kinoshita, E. et al. Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8, 2994鈥?003 (2008).CAS聽 Article聽Google Scholar聽 19Kinoshita, E. et al. Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes. Electrophoresis 30, 550鈥?59 (2009).CAS聽 Article聽Google Scholar聽 20Kinoshita, E., Kinoshita-Kikuta, E. Koike, T. Phosphate-affinity gel electrophoresis using a Phos-tag molecule for phosphoproteome study. Curr. Proteomics 6, 104鈥?21 (2009).CAS聽 Article聽Google Scholar聽 21Yamada, S. et al. Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis. Anal. Biochem. 360, 160鈥?62 (2007).CAS聽 Article聽Google Scholar聽 22Miyata, Y. Nishida, E. Analysis of the CK2-dependent phosphorylation of serine 13 in Cdc37 using a phospho-specific antibody and phospho-affinity gel electrophoresis. FEBS J. 274, 5690鈥?703 (2007).CAS聽 Article聽Google Scholar聽 23Maeder, C.I. et al. Spatial regulation of Fus3 MAP kinase activity through a reaction鈥揹iffusion mechanism in yeast pheromone signalling. Nat. Cell Biol. 9, 1319鈥?326 (2007).CAS聽 Article聽Google Scholar聽 24Oh, H. Irvine, K.D. In vivo regulation of Yorkie phosphorylation and localization. Development 135, 1081鈥?088 (2008).CAS聽 Article聽Google Scholar聽 25Uhrig, R.G. et al. Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant Physiol. 146, 1346鈥?357 (2008).CAS聽 Article聽Google Scholar聽 26Takeya, K., Loutzenhiser, K., Shiraishi, M., Loutzenhiser, R. Walsh, M.P. A highly sensitive technique to measure myosin regulatory light chain phosphorylation: the first quantification in renal arterioles. Am. J. Physiol. Renal Physiol. 294, F1487鈥揊1492 (2008).CAS聽 Article聽Google Scholar聽 27Tatematsu, K., Yoshimoto, N., Okajima, T., Tanizawa, K. Kuroda, S. Identification of ubiquitin ligase activity of RBCK1 and its inhibition by splice variant RBCK2 and protein kinase C尾. J. Biol. Chem. 283, 11575鈥?1585 (2008).CAS聽 Article聽Google Scholar聽 28Devault, A., Gueydon, E. Schwob, E. Interplay between S-cyclin-dependent kinase and Dbf4-dependent kinase in controlling DNA replication through phosphorylation of yeast Mcm4 N-terminal domain. Mol. Biol. Cell 19, 2267鈥?277 (2008).CAS聽 Article聽Google Scholar聽 29Masaoka, T., Nishi, M., Ryo, A., Endo, Y. Sawasaki, T. The wheat germ cell-free based screening of protein substrates of calcium/calmodulin-dependent protein kinase II delta. FEBS Lett. 582, 1795鈥?801 (2008).CAS聽 Article聽Google Scholar聽 30Kubota, T. et al. Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. J. Biol. Chem. 283, 25660鈥?5670 (2008).CAS聽 Article聽Google Scholar聽 31Matos, J. et al. Dbf4-dependent Cdc7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell 135, 662鈥?78 (2008).CAS聽 Article聽Google Scholar聽 32Bethke, G. et al. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc. Natl. Acad. Sci. USA 106, 8067鈥?072 (2009).CAS聽 Article聽Google Scholar聽 33Hanyu, Y. et al. Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor. Genes Cells 14, 539鈥?54 (2009).CAS聽 Article聽Google Scholar聽 34Ishiai, M. et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15, 1138鈥?146 (2008).CAS聽 Article聽Google Scholar聽 35Tomida, J., Kitao, H., Kinoshita, E. Takata, M. Detection of phosphorylation on large proteins by Western blotting using Phos-tag containing gel. Nat. Protoc. doi:10.1038/nprot.2008.232 (2008).36Kinoshita, E., Kinoshita-Kikuta, E., Ujihara, H. Koike, T. Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose. Proteomics, in press (2009).37Oh-Ishi, M. Maeda, T. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE). J. Chromatogr. B 849, 211鈥?22 (2007).CAS聽 Article聽Google Scholar聽 38Tatsumi, R. Hattori, A. Detection of giant myofibrillar proteins connectin and nebulin by electrophoresis in 2% polyacrylamide slab gels strengthened with agarose. Anal. Biochem. 224, 28鈥?1 (1995).CAS聽 Article聽Google Scholar聽 39Warren, C.M., Krzesinski, P.R. Greaser, M.L. Vertical agarose gel electrophoresis and electroblotting of high-molecular-weight proteins. Electrophoresis 24, 1695鈥?702 (2003).CAS聽 Article聽Google Scholar聽 40Kinoshita, E., Kinoshita-Kikuta, E. Koike, T. A single nucleotide polymorphism genotyping method using phosphate-affinity polyacrylamide gel electrophoresis. Anal. Biochem. 361, 294鈥?98 (2007).CAS聽 Article聽Google Scholar聽 41Kinoshita-Kikuta, E., Kinoshita, E. Koike, T. A mobility shift detection method for DNA methylation analysis using phosphate-affinity polyacrylamide gel electrophoresis. Anal. Biochem. 378, 102鈥?04 (2008).CAS聽 Article聽Google Scholar聽 42Brown, E.J. et al. A mammalian protein targeted by G1-arresting rapamycin鈥搑eceptor complex. Nature 369, 756鈥?58 (1994).CAS聽 Article聽Google Scholar聽 43Sabers, C.J. et al. Isolation of a protein target of the FKBP12鈥搑apamycin complex in mammalian cells. J. Biol. Chem. 270, 815鈥?22 (1995).CAS聽 Article聽Google Scholar聽 44Dennis, P.B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102鈥?105 (2001).CAS聽 Article聽Google Scholar聽 45Gingras, A.C., Raught, B. Sonenberg, N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15, 807鈥?26 (2001).CAS聽 Article聽Google Scholar聽 46Nav茅, B.T. et al. Mammalian target of rapamycin is a direct target for protein kinase B: identication of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344, 427鈥?31 (1999).Article聽Google Scholar聽 47Peterson, R.T., Beal, P.A., Comb, M.J. Schreiber, S.L. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J. Biol. Chem. 275, 7416鈥?423 (2000).CAS聽 Article聽Google Scholar聽 48Bakkenist, C.J. Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499鈥?06 (2003).CAS聽 Article聽Google Scholar聽 49Rappold, I., Iwabuchi, K., Date, T. Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol. 153, 613鈥?20 (2001).CAS聽 Article聽Google Scholar聽 50Ward, I.M., Minn, K., Jorda, K.G. Chen, J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J. Biol. Chem. 278, 19579鈥?9582 (2003).CAS聽 Article聽Google Scholar聽 Download referencesAcknowledgementsThis work was supported by Grants-in-Aid for Scientific Research (B) (19390011) and (C) (19590040) from the Japan Society of the Promotion of Science (JSPS), a Grant-in-Aid for Young Scientists (B) (20790036) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and a research grant from the Takeda Science Foundation.Author informationAffiliationsDepartment of Functional Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Hiroshima, JapanEiji Kinoshita,聽Emiko Kinoshita-Kikuta聽 聽Tohru KoikeAuthorsEiji KinoshitaView author publicationsYou can also search for this author in PubMed聽Google ScholarEmiko Kinoshita-KikutaView author publicationsYou can also search for this author in PubMed聽Google ScholarTohru KoikeView author publicationsYou can also search for this author in PubMed聽Google ScholarContributionsE.K., E.K.-K. and T.K. conceived, designed and performed the experiments and wrote the paper.Corresponding authorCorrespondence to Eiji Kinoshita.Supplementary information Supplementary Figure 1 (PDF 112 kb)Rights and permissionsReprints and PermissionsAbout this articleCite this articleKinoshita, E., Kinoshita-Kikuta, E. Koike, T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4, 1513鈥?521 (2009). https://doi.org/10.1038/nprot.2009.154Download citationPublished: 24 September 2009Issue Date: October 2009DOI: https://doi.org/10.1038/nprot.2009.154 Thorsten Stehlik, Marco Kremp, J枚rg Kahnt, Michael B枚lker Johannes Freitag Nature Communications (2020) Xia Yu, Xiaopan Gao, Kaixiang Zhu, Han Yin, Xujian Mao, Justyna Aleksandra Wojdyla, Bo Qin, Hairong Huang, Meitian Wang, Yi-Cheng Sun Sheng Cui Communications Biology (2020) Mami Yasukawa, Yoshinari Ando, Taro Yamashita, Yoko Matsuda, Shisako Shoji, Masaki Suimye Morioka, Hideya Kawaji, Kumiko Shiozawa, Mitsuhiro Machitani, Takaya Abe, Shinji Yamada, Mika K. Kaneko, Yukinari Kato, Yasuhide Furuta, Tadashi Kondo, Mikako Shirouzu, Yoshihide Hayashizaki, Shuichi Kaneko Kenkichi Masutomi Nature Communications (2020) Yandong Zhang, Changho Sohn, Seoyeon Lee, Heejeong Ahn, Jinyoung Seo, Junyue Cao Long Cai Communications Biology (2020) Zhipeng Gao, Xiaojun Man, Zhenhua Li, Jianbin Bi, Xiankui Liu, Zeliang Li, Jun Li, Zhe Zhang Chuize Kong Cancer Gene Therapy (2020) CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. Sign up for the Nature Briefing newsletter 鈥?what matters in science, free to your inbox daily.

新闻动态
行业前沿
技术文章
最新产品

188进口试剂采购网 www.188bio.cn -中国试剂网,试剂网,化学试剂网,国药试剂,抗体公司,试剂公司,试剂盒公司,苏州试剂公司,北京化学试剂公司,天津化学试剂,试剂商城,试剂代理,流式抗体 细胞库查询 sitemap