Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
...and challenges of genome-wide DNA methylation analysis |...188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线

...and challenges of genome-wide DNA methylation analysis |...

Methylation of cytosine residues at the carbon 5 position occurs naturally in many bacteria, archaea and eukaryotic species, in which it has various roles in protecting the genome from invading genomic parasites or in controlling the expression potential of regions of the genome. DNA methylation is established after DNA synthesis by dedicated enzymes with specific target sequence recognition sites. The uneven distribution of target sites and sample heterogeneity can result in complex DNA methylation patterns. The genomic distribution of DNA methylation encodes important biological information. Hence, techniques for comprehensively describing DNA methylation patterns have been developed. Many standard molecular biology techniques, such as cloning and PCR, erase DNA methylation information, and hybridization does not distinguish between methylated and unmethylated cytosines. There are three different initial treatments of DNA that can be used to reveal DNA methylation: endonuclease digestion, affinity enrichment and bisulphite conversion. The implementation of array hybridization techniques greatly facilitated genome-scale analysis of DNA methylation. Endonuclease-treated or affinity-enriched DNA methods are particularly well suited for array hybridization, whereas bisulphite conversion techniques are not. Next-generation sequencing allows for whole-genome single-base-pair resolution characterization of DNA methylation patterns, particularly as applied to bisulphite-converted DNA. No single technique excels in all aspects. Sample number and characteristics, as well as the desired accuracy, coverage and resolution, influence the choice of technique. DNA methylation is usually measured on a 尾-distributed absolute scale from 0 to 1, or 0 to 100%, rather than on an infinite scale of log ratios. The unique data distribution characteristics of DNA methylation will require the development of dedicated bioinformatics and computational tools. Single-molecule and nanopore sequencing approaches are likely to usher in the next revolution in high-throughput DNA methylation analysis. AbstractMethylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease. Therefore, profiling DNA methylation across the genome is vital to understanding the influence of epigenetics. There has been a revolution in DNA methylation analysis technology over the past decade: analyses that previously were restricted to specific loci can now be performed on a genome-scale and entire methylomes can be characterized at single-base-pair resolution. However, there is such a diversity of DNA methylation profiling techniques that it can be challenging to select one. This Review discusses the different approaches and their relative merits and introduces considerations for data analysis. Subscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comRent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices. References1Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189鈥?201 (2006). This study provided the first comprehensive DNA methylation analysis of a eukaryotic genome using whole-genome tiling arrays on affinity-enriched DNA.CAS聽 PubMed聽Google Scholar聽 2Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 39, 61鈥?9 (2007).CAS聽Google Scholar聽 3Zhang, X., Shiu, S., Cal, A. Borevitz, J. O. Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet. 4, e1000032 (2008).PubMed聽 PubMed Central聽Google Scholar聽 4Jones, P. A. The DNA methylation paradox. Trends Genet. 15, 34鈥?7 (1999).CAS聽Google Scholar聽 5Hellman, A. Chess, A. Gene body-specific methylation on the active X chromosome. Science 315, 1141鈥?143 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 6Ball, M. P. et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotech. 27, 361鈥?68 (2009).CAS聽Google Scholar聽 7Miura, A. et al. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J. 28, 1078鈥?086 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 8Costello, J. F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genet. 24, 132鈥?38 (2000).CAS聽Google Scholar聽 9Allegrucci, C. et al. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum. Mol. Genet. 16, 1253鈥?268 (2007).CAS聽Google Scholar聽 10Kawai, J. et al. Methylation profiles of genomic DNA of mouse developmental brain detected by restriction landmark genomic scanning (RLGS) method. Nucleic Acids Res. 21, 5604鈥?608 (1993).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 11Plass, C. et al. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nature Genet. 14, 106鈥?09 (1996).CAS聽Google Scholar聽 12Song, F. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl Acad. Sci. USA 102, 3336鈥?341 (2005).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 13Hayashizaki, Y. et al. Restriction landmark genomic scanning method and its various applications. Electrophoresis 14, 251鈥?58 (1993). This study demonstrated the principle of genome-scale DNA methylation analysis using RLGS.CAS聽Google Scholar聽 14Hatada, I. et al. A microarray-based method for detecting methylated loci. J. Hum. Genet. 47, 448鈥?51 (2002).CAS聽Google Scholar聽 15Balog, R. P. et al. Parallel assessment of CpG methylation by two-color hybridization with oligonucleotide arrays. Anal. Biochem. 309, 301鈥?10 (2002).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 16van Steensel, B., Delrow, J. Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nature Genet. 27, 304鈥?08 (2001).CAS聽Google Scholar聽 17Yan, P. S. et al. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin. Cancer Res. 6, 1432鈥?438 (2000).CAS聽Google Scholar聽 18Huang, T. H., Perry, M. R. Laux, D. E. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet. 8, 459鈥?70 (1999).CAS聽Google Scholar聽 19El-Osta, A. Wolffe, A. P. Analysis of chromatin-immunopurified MeCP2-associated fragments. Biochem. Biophys. Res. Commun. 289, 733鈥?37 (2001).CAS聽Google Scholar聽 20Beck, S., Olek, A. Walter, J. From genomics to epigenomics: a loftier view of life. Nature Biotech. 17, 1144 (1999).CAS聽Google Scholar聽 21Yan, P. S. et al. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res. 61, 8375鈥?380 (2001).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 22Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215鈥?19 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 23Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315鈥?22 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 24Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523鈥?36 (2008). References 22鈥?4 provided the first single-base-pair resolution WGSBS of the A. thaliana (references 22 and 24) and human (reference 23) genomes.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 25Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotech. 27, 353鈥?60 (2009).CAS聽Google Scholar聽 26Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766鈥?70 (2008). This study provided the first genome-scale single-base-pair resolution DNA methylation map of mammalian genomes by RRBS.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 27Kriaucionis, S. Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929鈥?30 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 28Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930鈥?35 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 29Laird, P. W. The power and the promise of DNA methylation markers. Nature Rev. Cancer 3, 253鈥?66 (2003).CAS聽Google Scholar聽 30Schones, D. E. Zhao, K. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet. 9, 179鈥?91 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 31Fraga, M. F. Esteller, M. DNA methylation: a profile of methods and applications. Biotechniques 33, 632鈥?49 (2002).CAS聽Google Scholar聽 32Pomraning, K. R., Smith, K. M. Freitag, M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods 47, 142鈥?50 (2009).CAS聽Google Scholar聽 33Callinan, P. A. Feinberg, A. P. The emerging science of epigenomics. Hum. Mol. Genet. 15, R95鈥揜101 (2006).CAS聽Google Scholar聽 34Beck, S. Rakyan, V. K. The methylome: approaches for global DNA methylation profiling. Trends Genet. 24, 231鈥?37 (2008).CAS聽Google Scholar聽 35Ushijima, T. Detection and interpretation of altered methylation patterns in cancer cells. Nature Rev. Cancer 5, 223鈥?31 (2005).CAS聽Google Scholar聽 36Hatada, I. Emerging technologies for genome-wide DNA methylation profiling in cancer. Crit. Rev. Oncog. 12, 205鈥?23 (2006). Google Scholar聽 37Wilson, I. M. et al. Epigenomics: mapping the methylome. Cell Cycle 5, 155鈥?58 (2006).CAS聽Google Scholar聽 38Lister, R. Ecker, J. R. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res. 19, 959鈥?66 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 39Lieb, J. D. et al. Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenet. Genome Res. 114, 1鈥?5 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 40Jacinto, F. V., Ballestar, E. Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 44, 35鈥?3 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 41Berman, B. P., Weisenberger, D. J. Laird, P. W. Locking in on the human methylome. Nature Biotech. 27, 341鈥?42 (2009).CAS聽Google Scholar聽 42Jeddeloh, J. A., Greally, J. M. Rando, O. J. Reduced-representation methylation mapping. Genome Biol. 9, 231 (2008).PubMed聽 PubMed Central聽Google Scholar聽 43Tompa, R. et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Curr. Biol. 12, 65鈥?8 (2002).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 44van der Ploeg, L. H. Flavell, R. A. DNA methylation in the human 纬未尾-globin locus in erythroid and nonerythroid tissues. Cell 19, 947鈥?58 (1980).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 45Waalwijk, C. Flavell, R. A. DNA methylation at a CCGG sequence in the large intron of the rabbit 尾-globin gene: tissue-specific variations. Nucleic Acids Res. 5, 4631鈥?634 (1978).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 46Kaput, J. Sneider, T. W. Methylation of somatic vs germ cell DNAs analyzed by restriction endonuclease digestions. Nucleic Acids Res. 7, 2303鈥?322 (1979).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 47Gautier, F., Bunemann, H. Grotjahn, L. Analysis of calf-thymus satellite DNA: evidence for specific methylation of cytosine in C-G. sequences. Eur. J. Biochem. 80, 175鈥?83 (1977).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 48Liang, G., Gonzalgo, M. L., Salem, C. Jones, P. A. Identification of DNA methylation differences during tumorigenesis by methylation-sensitive arbitrarily primed polymerase chain reaction. Methods 27, 150鈥?55 (2002).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 49Frigola, J., Ribas, M., Risques, R. A. Peinado, M. A. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res. 30, e28 (2002).PubMed聽 PubMed Central聽Google Scholar聽 50Estecio, M. R. et al. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res. 17, 1529鈥?536 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 51Toyota, M. et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 59, 2307鈥?312 (1999).CAS聽 PubMed聽Google Scholar聽 52Chung, W. et al. Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. PLoS ONE 3, e2079 (2008).PubMed聽 PubMed Central聽Google Scholar聽 53Omura, N. et al. Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol. Ther. 7, 1146鈥?156 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 54Shen, L. et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl Acad. Sci. USA 104, 18654鈥?8659 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 55Yan, P. S., Potter, D., Deatherage, D. E., Huang, T. H. Lin, S. Differential methylation hybridization: profiling DNA methylation with a high-density CpG island microarray. Methods Mol. Biol. 507, 89鈥?06 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 56Cross, S. H., Charlton, J. A., Nan, X. Bird, A. P. Purification of CpG islands using a methylated DNA binding column. Nature Genet. 6, 236鈥?44 (1994). The first demonstration of affinity enrichment of methylated DNA.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 57Tran, R. K. et al. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr. Biol. 15, 154鈥?59 (2005).CAS聽Google Scholar聽 58Pietrobono, R. et al. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5- azadeoxycytidine. Nucleic Acids Res. 30, 3278鈥?285 (2002).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 59Nouzova, M. et al. Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J. Pharmacol. Exp. Ther. 311, 968鈥?81 (2004).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 60Ordway, J. M. et al. Identification of novel high-frequency DNA methylation changes in breast cancer. PLoS ONE 2, e1314 (2007).PubMed聽 PubMed Central聽Google Scholar聽 61Ordway, J. M. et al. Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis 27, 2409鈥?423 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 62Irizarry, R. A. et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res. 18, 780鈥?90 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 63Ibrahim, A. E. et al. MMASS: an optimized array-based method for assessing CpG island methylation. Nucleic Acids Res. 34, e136 (2006).PubMed聽 PubMed Central聽Google Scholar聽 64Schumacher, A. et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 34, 528鈥?42 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 65Rollins, R. A. et al. Large-scale structure of genomic methylation patterns. Genome Res. 16, 157鈥?63 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 66Khulan, B. et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res. 16, 1046鈥?055 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 67Oda, M. et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 37, 3829鈥?839 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 68Brunner, A. L. et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19, 1044鈥?056 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 69Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799鈥?16 (2007).CAS聽Google Scholar聽 70Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823鈥?37 (2007).CAS聽Google Scholar聽 71Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553鈥?60 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 72Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449, 933鈥?37 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 73Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77鈥?8 (2007).CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 74Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651鈥?57 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 75Mukhopadhyay, R. et al. The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide. Genome Res. 14, 1594鈥?602 (2004).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 76Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet. 39, 457鈥?66 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 77Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853鈥?62 (2005).CAS聽Google Scholar聽 78Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genet. 38, 149鈥?53 (2006). References 76鈥?8 provided the first genome-wide analyses of mammalian genomes using affinity enrichment of methylated DNA.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 79Farthing, C. R. et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4, e1000116 (2008).PubMed聽 PubMed Central聽Google Scholar聽 80Fouse, S. D. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2, 160鈥?69 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 81Dindot, S. V., Person, R., Strivens, M., Garcia, R. Beaudet, A. L. Epigenetic profiling at mouse imprinted gene clusters reveals novel epigenetic and genetic features at differentially methylated regions. Genome Res. 19, 1374鈥?383 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 82Hayashi, H. et al. High-resolution mapping of DNA methylation in human genome using oligonucleotide tiling array. Hum. Genet. 120, 701鈥?11 (2007).CAS聽Google Scholar聽 83Cheng, A. S. et al. Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res. 68, 1786鈥?796 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 84Gal-Yam, E. N. et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl Acad. Sci. USA 105, 12979鈥?2984 (2008). Google Scholar聽 85Smith, A. E. et al. Epigenetics of human T cells during the G0鈫扜1 transition. Genome Res. 19, 1325鈥?337 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 86Koga, Y. et al. Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res. 19, 1462鈥?470 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 87Straussman, R. et al. Developmental programming of CpG island methylation profiles in the human genome. Nature Struct. Mol. Biol. 16, 564鈥?71 (2009).CAS聽Google Scholar聽 88Down, T. A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotech. 26, 779鈥?85 (2008).CAS聽Google Scholar聽 89Gebhard, C. et al. Rapid and sensitive detection of CpG-methylation using methyl-binding (MB)-PCR. Nucleic Acids Res. 34, e82 (2006).PubMed聽 PubMed Central聽Google Scholar聽 90Gebhard, C. et al. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res. 66, 6118鈥?128 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 91Schmidl, C. et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 19, 1165鈥?174 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 92Jorgensen, H. F., Adie, K., Chaubert, P. Bird, A. P. Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res. 34, e96 (2006).PubMed聽 PubMed Central聽Google Scholar聽 93Rauch, T. Pfeifer, G. P. Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab. Invest. 85, 1172鈥?180 (2005).CAS聽Google Scholar聽 94Rauch, T. A. Pfeifer, G. P. The MIRA method for DNA methylation analysis. Methods Mol. Biol. 507, 65鈥?5 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 95Rauch, T. A. et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc. Natl Acad. Sci. USA 105, 252鈥?57 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 96Ballestar, E. et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 22, 6335鈥?345 (2003).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 97Hayatsu, H. Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis 鈥?a personal account. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 84, 321鈥?30 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 98Wang, R. Y., Gehrke, C. W. Ehrlich, M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res. 8, 4777鈥?790 (1980).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 99Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827鈥?831 (1992). Although differential deamination of methylated and unmethylated cytosine residues had been described previously, this study provided a practical demonstration of the technique for the analysis of DNA methylation at the single-base-pair level using PCR amplification.CAS聽Google Scholar聽 100Clark, S. J., Harrison, J., Paul, C. L. Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990鈥?997 (1994).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 101Paul, C. L. Clark, S. J. Cytosine methylation: quantitation by automated genomic sequencing and GENESCAN analysis. Biotechniques 21, 126鈥?33 (1996).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 102Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet. 38, 1378鈥?385 (2006). The first example of \'brute force\' bisulphite Sanger sequencing of many targets in mammalian genomes.CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 103Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 30, e21 (2002).PubMed聽 PubMed Central聽Google Scholar聽 104Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S. Huang, T. H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12, 158鈥?64 (2002).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 105Reinders, J. et al. Genome-wide, high-resolution DNA methylation profiling using bisulfite-mediated cytosine conversion. Genome Res. 18, 469鈥?76 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 106Bibikova, M. et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383鈥?93 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 107Bibikova, M. et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res. 16, 1075鈥?083 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 108Bibikova, M. Fan, J. B. GoldenGate assay for DNA methylation profiling. Methods Mol. Biol. 507, 149鈥?63 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 109Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061鈥?068 (2008).110Byun, H. M. et al. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet. 18, 4808鈥?817 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 111Ladd-Acosta, C. et al. DNA methylation signatures within the human brain. Am. J. Hum. Genet. 81, 1304鈥?315 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 112Katari, S. et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum. Mol. Genet. 18, 3769鈥?778 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 113Martinez, R. et al. A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 4, 255鈥?64 (2009).CAS聽 PubMed聽Google Scholar聽 114Christensen, B. C. et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 5, e1000602 (2009).PubMed聽 PubMed Central聽Google Scholar聽 115Houseman, E. A. et al. Model-based clustering of DNA methylation array data: a recursive- partitioning algorithm for high-dimensional data arising as a mixture of 尾 distributions. BMC Bioinformatics 9, 365 (2008).PubMed聽 PubMed Central聽Google Scholar聽 116Hinoue, T. et al. Analysis of the association between CIMP and BRAFV600E in colorectal cancer by DNA methylation profiling. PLoS ONE 4, e8357 (2009).PubMed聽 PubMed Central聽Google Scholar聽 117Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 1, 177鈥?00 (2009).CAS聽 PubMed聽Google Scholar聽 118Steemers, F. J. Gunderson, K. L. Whole genome genotyping technologies on the BeadArray platform. Biotechnol. J. 2, 41鈥?9 (2007).CAS聽Google Scholar聽 119Korshunova, Y. et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res. 18, 19鈥?9 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 120Taylor, K. H. et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67, 8511鈥?518 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 121Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868鈥?877 (2005).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 122Hodges, E. et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res.6 Jul 2009 (doi: 10.1101/gr.095190.109).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 123Li, J. B. et al. Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Res. 19, 1606鈥?615 (2009).PubMed聽 PubMed Central聽Google Scholar聽 124Dunn, J. J., McCorkle, S. R., Everett, L. Anderson, C. W. Paired-end genomic signature tags: a method for the functional analysis of genomes and epigenomes. Genet. Eng. (NY) 28, 159鈥?73 (2007).CAS聽Google Scholar聽 125Dempsey, M. P. et al. Paired-end sequence mapping detects extensive genomic rearrangement and translocation during divergence of Francisella tularensis subsp. tularensis and Francisella tularensis subsp. holarctica populations. J. Bacteriol. 188, 5904鈥?914 (2006).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 126Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420鈥?26 (2007).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 127Tost, J., Schatz, P., Schuster, M., Berlin, K. Gut, I. G. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res. 31, e50 (2003).PubMed聽 PubMed Central聽Google Scholar聽 128Ehrich, M. et al. Cytosine methylation profiling of cancer cell lines. Proc. Natl Acad. Sci. USA 105, 4844鈥?849 (2008).CAS聽Google Scholar聽 129Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA 102, 15785鈥?5790 (2005).CAS聽Google Scholar聽 130Docherty, S. J., Davis, O. S., Haworth, C. M., Plomin, R. Mill, J. Bisulfite-based epityping on pooled genomic DNA provides an accurate estimate of average group DNA methylation. Epigenetics Chromatin 2, 3 (2009).PubMed聽 PubMed Central聽Google Scholar聽 131Killian, J. K. et al. Large-scale profiling of archival lymph nodes reveals pervasive remodeling of the follicular lymphoma methylome. Cancer Res. 69, 758鈥?64 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 132Tetzner, R. Prevention of PCR cross-contamination by UNG treatment of bisulfite-treated DNA. Methods Mol. Biol. 507, 357鈥?70 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 133Tetzner, R., Dietrich, D. Distler, J. Control of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA. Nucleic Acids Res. 35, e4 (2007).PubMed聽 PubMed Central聽Google Scholar聽 134Dohm, J. C., Lottaz, C., Borodina, T. Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).PubMed聽 PubMed Central聽Google Scholar聽 135Warnecke, P. M. et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 25, 4422鈥?426 (1997).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 136Campan, M., Weisenberger, D. J., Trinh, B. Laird, P. W. MethyLight. Methods Mol. Biol. 507, 325鈥?37 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 137Weisenberger, D. J. et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 33, 6823鈥?836 (2005).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 138Kerkel, K. et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genet. 40, 904鈥?08 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 139Houseman, E. A. et al. Copy number variation has little impact on bead-array-based measures of DNA methylation. Bioinformatics 25, 1999鈥?005 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 140Siegmund, K. D., Marjoram, P., Woo, Y. J., Tavare, S. Shibata, D. Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc. Natl Acad. Sci. USA 106, 4828鈥?833 (2009).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 141Fatemi, M. et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 33, e176 (2005).PubMed聽 PubMed Central聽Google Scholar聽 142Weisenberger, D. J. et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 36, 4689鈥?698 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 143Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nature Biotech. 27, 858鈥?63 (2009). Google Scholar聽 144Chhibber, A. Schroeder, B. G. Single-molecule polymerase chain reaction reduces bias: application to DNA methylation analysis by bisulfite sequencing. Anal. Biochem. 377, 46鈥?4 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 145Bock, C. Lengauer, T. Computational epigenetics. Bioinformatics 24, 1鈥?0 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 146Pennisi, E. Research funding. Are epigeneticists ready for big science? Science 319, 1177 (2008).PubMed聽 PubMed Central聽Google Scholar聽 147Jones, P. A. et al. Moving AHEAD with an international human epigenome project. Nature 454, 711鈥?15 (2008).CAS聽Google Scholar聽 148Pushkarev, D., Neff, N. F. Quake, S. R. Single-molecule sequencing of an individual human genome. Nature Biotech. 27, 847鈥?52 (2009).CAS聽Google Scholar聽 149Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133鈥?38 (2009).CAS聽 PubMed聽Google Scholar聽 150Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotech. 26, 1146鈥?153 (2008).CAS聽Google Scholar聽 151Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnol. 4, 265鈥?70 (2009).CAS聽Google Scholar聽 152Model, F., Adorjan, P., Olek, A. Piepenbrock, C. Feature selection for DNA methylation based cancer classification. Bioinformatics 17, S157鈥揝164 (2001).PubMed聽 PubMed Central聽Google Scholar聽 153Rohde, C. et al. Bisulfite sequencing Data Presentation and Compilation (BDPC) web server 鈥?a useful tool for DNA methylation analysis. Nucleic Acids Res. 36, e34 (2008).PubMed聽 PubMed Central聽Google Scholar聽 154Xi, Y. Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).PubMed聽 PubMed Central聽Google Scholar聽 155Xu, Y. H., Manoharan, H. T. Pitot, H. C. CpG Analyzer, a Windows-based utility program for investigation of DNA methylation. Biotechniques 39, 656鈥?62 (2005).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 156Hackenberg, M. et al. CpGcluster: a distance-based algorithm for CpG-island detection. BMC Bioinformatics 7, 446 (2006).PubMed聽 PubMed Central聽Google Scholar聽 157Wang, Y. Leung, F. C. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20, 1170鈥?177 (2004).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 158Takai, D. Jones, P. A. The CpG Island Searcher: a new WWW resource. In Silico Biol. 3, 235鈥?40 (2003).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 159Xu, Y. H., Manoharan, H. T. Pitot, H. C. CpG PatternFinder: a Windows-based utility program for easy and rapid identification of the CpG methylation status of DNA. Biotechniques 43, 334鈥?42 (2007).CAS聽Google Scholar聽 160Ioshikhes, I. P. Zhang, M. Q. Large-scale human promoter mapping using CpG islands. Nature Genet. 26, 61鈥?3 (2000).CAS聽Google Scholar聽 161Carr, I. M., Valleley, E. M., Cordery, S. F., Markham, A. F. Bonthron, D. T. Sequence analysis and editing for bisulphite genomic sequencing projects. Nucleic Acids Res. 35, e79 (2007).PubMed聽 PubMed Central聽Google Scholar聽 162Hetzl, J., Foerster, A. M., Raidl, G. Mittelsten Scheid, O. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J. 51, 526鈥?36 (2007).CAS聽Google Scholar聽 163Pelizzola, M. et al. MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res. 18, 1652鈥?659 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 164Pattyn, F. et al. methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics 7, 496 (2006).PubMed聽 PubMed Central聽Google Scholar聽 165Grunau, C., Renault, E., Rosenthal, A. Roizes, G. MethDB 鈥?a public database for DNA methylation data. Nucleic Acids Res. 29, 270鈥?74 (2001).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 166Grunau, C., Renault, E. Roizes, G. DNA Methylation Database \'MethDB\': a user guide. J. Nutr. 132, 2435S鈥?439S (2002).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 167Amoreira, C., Hindermann, W. Grunau, C. An improved version of the DNA methylation database (MethDB). Nucleic Acids Res. 31, 75鈥?7 (2003).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 168Negre, V. Grunau, C. The MethDB DAS server: adding an epigenetic information layer to the human genome. Epigenetics 1, 101鈥?05 (2006).PubMed聽 PubMed Central聽Google Scholar聽 169Li, L. C. Dahiya, R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427鈥?431 (2002).CAS聽 PubMed聽Google Scholar聽 170Grunau, C., Schattevoy, R., Mache, N. Rosenthal, A. MethTools 鈥?a toolbox to visualize and analyze DNA methylation data. Nucleic Acids Res. 28, 1053鈥?058 (2000).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 171He, X. et al. MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res. 36, D836鈥揇841 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 172Rakyan, V. K. et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 18, 1518鈥?529 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 173Ongenaert, M. et al. PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res. 36, D842鈥揇846 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 174Kumaki, Y., Oda, M. Okano, M. QUMA: quantification tool for methylation analysis. Nucleic Acids Res. 36, W170鈥揥175 (2008).CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 Download referencesAcknowledgementsI am grateful to K. Siegmund and to members of the University of Southern California Epigenome Center for many helpful discussions. P.W.L.\'s research is supported by National Cancer Institute grants R01-CA118699 and U24-CA143882 and by the Norris Foundation, the Ovarian Cancer Research Fund, the Canary Foundation, the Entertainment Industry Foundation and the Riley Foundation.Author informationAffiliationsUSC Epigenome Center, University of Southern California, Keck School of Medicine, 1450 Biggy Street, Room G511B, Los Angeles, 90089-9601, California, USAPeter W. LairdAuthorsPeter W. LairdView author publicationsYou can also search for this author in PubMed聽Google ScholarEthics declarations Competing interests Peter W. Laird is consultant for Epigenomics, AG, which has a commercial interest in DNA methylation biomarkers. Related linksRelated linksFURTHER INFORMATION Peter W. Laird\'s homepage The Cancer Genome Atlas NCBI Reference Sequence Collection University of Southern California Epigenome Center GlossaryTransposons Mobile DNA elements that can relocate within the genome of their hosts. Restriction鈥搈odification system A set of enzymes found in many bacteria and archaea that protects the host genome from genomic parasites. Restriction鈥搈odification systems consist of sequence-specific restriction endonucleases, which target invading DNA, and associated DNA methyltransferases with similar recognition sequences, which protect the host genome from the action of the endonucleases. Mismatch repair A DNA-repair pathway that removes mismatched bases and corrects the insertion or deletion of short stretches of (repeated) DNA. CpG islands In eukaryotic genomes, regions of several hundred base pairs that are not depleted of CpGs by 5-methylcytosine deamination owing to them being unmethylated in the germ line. They often overlap transcription start sites. Most definitions of CpG islands set a minimum length (for example, 200 or 500聽bp), a minimum observed:expected CpG ratio (for example, greater than 0.6 or 0.65) and a minimum GC content (for example, 50% or 55%). Isoschizomers Pairs of structurally distinct restriction enzymes with the same recognition sequence and the same cleavage positions. Neoschizomers Pairs of structurally distinct restriction enzymes with the same recognition sequence but with different cleavage positions. Imprinted A locus with monoallelic expression determined by the parental origin of the allele. Chromatin immunoprecipitation A technique that is used to identify the location of DNA-binding proteins and epigenetic marks in the genome. Genomic sequences containing the mark of interest are enriched by binding soluble DNA chromatin extracts (complexes of DNA and protein) to an antibody that recognizes the mark. Related techniques 鈥?such as methylated DNA immunoprecipitation 鈥?use antibodies to recognize DNA modifications directly. Array capture A method for enriching whole genomic DNA for many regions of interest by hybridization to an array containing RNA or DNA sequences complementary to the regions of interest. Padlock capture A method for simultaneously capturing and amplifying large numbers of regions of interest from whole genomic DNA. Each padlock probe has two complementary oligonucleotide sequences that flank a region of interest. The sequences are joined by a loop of DNA that ensures efficient joint hybridization and contains sequences for PCR with universal primers. Solution hybrid selection A method for enriching whole genomic DNA for many regions of interest by hybridization to a complex library of RNA or DNA sequences in solution, followed by retrieval of the annealed hybrids. Hemimethylated Methylation of a residue on one strand within a palindromic target sequence but not of the corresponding residue within the palindromic target sequence on the complementary DNA strand. Not be confused with monoallelic methylation, in which one allele of a locus is methylated in a diploid organism. 尾 distribution A continuous probability distribution with an interval between 0 and 1. Two positive parameters, 伪 and 尾, are used to define 尾 distributions. Median absolute deviation A measure of statistical dispersion that is less influenced by outliers and extreme values than standard deviation. It is defined as the median of the collection of absolute deviations from the data set\'s median. Quantile normalization A method for equalizing the total signal intensities and distributions of probe signal strengths among arrays or among colour channels on an array. It sorts all probes by signal strength and then matches probes at each rank position among arrays and forces the values at each rank position to be equal. An identical distribution of probe signal strengths among the arrays or colour channels is obtained. LOESS normalization A computationally intensive method in which a polynomial regression is fitted to each point in the data and more weight is given to data nearer the point of interest. It is often applied to hybridization array data to remove differences in global signal intensity among data sets or colour channels. MA plot A representation of microarray data in which M (vertical axis) is the intensity ratio between the red (R) and green (G) colour channels (M=log(R/G)) and A (horizontal axis) is the mean intensity (A=(logR+logG)/2). This representation is often used as a basis for normalizing microarray data, with the underlying assumptions that dye bias is dependent on signal intensity, that the majority of probes do not have very different signal intensities among channels and that approximately the same number of probes in each channel have signal intensities that are stronger than the equivalent probes in the other channel. Targeted indexing Indexing refers to the incorporation of short sequences as tagged codes during the construction of a sequencing library, followed by the simultaneous parallel sequencing of libraries from many sources. The source of the DNA sequence for each read can be deduced from the index. This technique can be combined with targeted sequencing of regions of interest enriched by hybrid selection. Rights and permissionsReprints and PermissionsAbout this articleCite this articleLaird, P. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11, 191鈥?03 (2010). https://doi.org/10.1038/nrg2732Download citationPublished: 02 February 2010Issue Date: March 2010DOI: https://doi.org/10.1038/nrg2732 Stefan Milosavljevic, Tony Kuo, Samuele Decarli, Lucas Mohn, Jun Sese, Kentaro K. Shimizu, Rie Shimizu-Inatsugi Mark D. Robinson BMC Genomics (2021) Jacob Morrison, Julie M. Koeman, Benjamin K. Johnson, Kelly K. Foy, Ian Beddows, Wanding Zhou, David W. Chesla, Larissa L. Rossell, Emily J. Siegwald, Marie Adams Hui Shen Epigenetics Chromatin (2021) Zhen Wang, J茅r么me Maluenda, Laur猫ne Giraut, Thibault Vieille, Andr茅as Lefevre, David Salthouse, Ga毛l Radou, R茅mi Moulinas, Sandra Astete, Pol D鈥橝vezac, Geoff Smith, Charles Andr茅, Jean-Fran莽ois Allemand, David Bensimon, Vincent Croquette, Jimmy Ouellet Gordon Hamilton Communications Biology (2021) Sign up for the Nature Briefing newsletter 鈥?what matters in science, free to your inbox daily.

新闻动态
行业前沿
技术文章
最新产品

188进口试剂采购网 www.188bio.cn -中国试剂网,试剂网,化学试剂网,国药试剂,抗体公司,试剂公司,试剂盒公司,苏州试剂公司,北京化学试剂公司,天津化学试剂,试剂商城,试剂代理,流式抗体 细胞库查询 sitemap