Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
Oxford Genetics/pSF-CMV-Puro-NH2-STag-EKT (OG1163) N-terminal S-Tag tag mammalian plasmid/OG1163/1 Ea188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线
产品资料

Oxford Genetics/pSF-CMV-Puro-NH2-STag-EKT (OG1163) N-terminal S-Tag tag mammalian plasmid/OG1163/1 Ea

Plasmid Info:

Plasmid Information

Product Name: pSF-CMV-Puro-NH2-STag-EKT

Product Code: OG1163

Size (bp): 6209 bp

Bacterial Antibiotic Selection: KanR

Origin and Compatibility: pUC high copy derived from pBR322

Bacterial Copy Number: 500-700 per cell

Promoter: Cytomegalovirus (CMV) immediate early promoter / Human Ubiquitin Promoter

Plasmid Purpose:

This plasmid is designed to express tagged proteins in mammalian cells either by transient transfection or by creating stable cell lines. It contains a puromycin resistance expression cassette using the human Ubiquitin promoter to drive expression and allow for the selection of cells containing the plasmid.

About the Cleavage Tag:

This plasmid also encodes a protease cleavage site that is designed to be positioned between your gene of interest and the tag to allow the removal of the tag following protein purification or isolation. This plasmid contains a EKT cleavage tag. The protein sequence of the cleavage tag is: DDDDK. Enterokinase (EKT) protease cleaves after the Lysine residue. It can cleave at other basic residues but this is dependent on protein confirmation. If a proline follows the site it will not cut. None of our products contain a proline after the site.

For more information on which cleavage tag to use see our cleavage tag guide.

Promoter Expression Level:

This plasmid contains the mammalian CMV promoter to drive gene expression. We have tested all of our mammalian promoters in a range of cell types and CMV is consistently the strongest in those we have studied. However there are many reports of the CMV promoter demonstrating silencing by methylation in long-term culture. For this reason we stock a range of other promoters that are compatible with this plasmid and are available on request.

About the Peptide Tag:

This plasmid contains an n-terminal STag epitope tag that can be fused to a gene of interest to allow protein detection and/or purification. The sequence of the tag is: KETAAAKFERQHMDS

For more information on the methods that can be used to purify proteins please see our protein tag guide.

Sequence and Map:

Other Info:

Transcription Termination:

This plasmid contains three alternative transcription terminators for mammalian bacterial and bacteriophage (T7) expression. This means that only the promoter needs to be changed to alter the expression system you are using. We sell multiple promoters that can be used in each of these systems. The presence of each terminator does not reduce expression in the alternative systems.

Cloning:

Making Protein Fusions:

This plasmid has been designed to allow three types of cloning into the main MCS to join a coding sequence with the tag.

1: SnapFusion Cloning:

If you would like to fuse your coding sequence to the tag with minimal additional bases you can use our SnapFusion technology. This process involves amplifying your gene by PCR to add specific restriction sites onto the ends. When these sites are cut they produce an overhang that is compatible with this plasmid cut with BseRI or BsgI.

To insert your gene:


1: Amplify your gene with primers designed using this spreadsheet
2: Cut the plasmid with either BseRI or BsgI.*
3: Cut your gene with the enzyme you added using the spreadsheet (any of AcuI BpmI BpuEI BseRI BsgI EciI).
4: Clone the gene into the plasmid using DNA ligase.

Using this method with an N-terminal tag plasmid will result in the tag coding sequence immediately followed by your genes ATG start codon at the join. This results in a seamless fusion of the two sequences with no extra bases being added. Using this method on C-terminal tag plasmids will convert your genes stop codon into a TAC (Tyr Y) codon followed by the plasmid tag coding sequence. This results in no extra bases between your gene and the tag. See the diagram below for more information.

*Please note that insect expression plasmids cannot be cut with BsgI only BseRI because of unavoidable conflicting sites in the backbone. Also Yeast plasmids cannot be cut with BseRI because of unavoidable restriction sites in the backbone.

Using this technique will create a gene fragment that can be ligated into any or our >1500 peptide and reporter tag plasmids. If you use one of the other techniques below (Gibson InFusion Seamless or LIC) you will need new primers for every vector you clone into because the arms of homology will change according to the tag plasmid you are cloning into.

If you find that your gene sequence has sites in it that make using this cloning strategy difficult you can still use one of the alternative methods below (e.g. standard cloning or Gibson cloning).

Open the Primer Design Tool to help you design primers for cloning your gene in our SnapFusion technique.

2: Standard Enzymes:

If you are not concerned about leaving a few extra bases between the tag coding sequence and your gene you can clone your gene into the vector using standard cloning restriction enzymes. This strategy will require you to choose which enzymes you want to use to clone your gene.

Open the Primer Design Tool which provides primers with different enzyme choices positioning your gene as close to the tag as possible in each case. Please note that standard enzymes will always leave additional nucleotides between your gene and the tag but using the spreadsheet will ensure the tag and gene are in frame.

3: Gibson cloning/InfusionHD/GeneArt Seamless/Ligase Independent Cloning (LIC) Methods:

These cloning techniques use reagents sold by other companies and allow you to fuse sequences together using enzymes that chew back the DNA to leave overlapping ends/overhangs. The subsequent method of joining the DNA depends on the kit used. To use one of these techniques you can either design your own primers or you can use the spreadsheet below to help with the design.

Open the Primer Design Tool to help you design primers for cloning your gene using Gibson assembly InfusionHD GeneArt Seamless cloning or Ligase Independent Cloning (LIC) techniques.

IP Status:

Intellectual Property Status

This product is part of our SnapFast plasmid range, for more information on the Intellectual property status of this plasmid please click here

新闻动态
行业前沿
技术文章
最新产品