Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
Cytoskeleton/General tubulin buffer: 1x stock/1x10 ml/BST01188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线
产品资料

Cytoskeleton/General tubulin buffer: 1x stock/1x10 ml/BST01

Details

Product Uses Include

  •  Resuspension and storage of tubulin

 

MaterialGeneral tubulin buffer (PEM). Contains 80 mM PIPES pH 6.9, 2 mM MgCl2 and 0.5 mM EGTA. Used as a tubulin working buffer in the form of G-PEM (i.e. PEM plus 1 mM GTP (Cat.# BST06)) or a tubulin polymerization buffer in the form of glycerol containing G-PEM (PEM plus 1 mM GTP (Cat. # BST06) and e.g. 5% glycerol (see Cat. # BST05)).

About

For product Datasheets and MSDSs please click on the PDF links below. For additional information, click on the FAQs tab above or contact our Technical Support department at tservice@cytoskeleton.com

Citations

Chen et al., 2012. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines. Cancer Lett. 315, 1-11.

Hartley et al., 2012. Polygamain, a New Microtubule Depolymerizing Agent That Occupies a Unique Pharmacophore in the Colchicine Site. Mol. Pharmacol. 81, 431-439.

Chang et al., 2011. Mycotoxin Citrinin Induced Cell Cycle G2/M Arrest and Numerical Chromosomal Aberration Associated with Disruption of Microtubule Formation in Human Cells. Toxicol. Sci. 119, 84–92.

Risinger et al., 2011. ELR510444, A Novel Microtubule Disruptor with Multiple Mechanisms of Action. J. Pharmacol. Exp. Ther. 336, 652–660.

Faridi et al., 2011. Proteomics indicates modulation of tubulin polymerization by L-menthol inhibiting human epithelial colorectal adenocarcinoma cell proliferation. Proteomics. 11, 2115-2119.

Carletti et al., 2011. Effect of protein glutathionylation on neuronal cytoskeleton: a potential link to neurodegeneration. Neuroscience. 192, 285-294.

O"Boyle et al., 2010. Synthesis and Evaluation of Azetidinone Analogues of Combretastatin A-4 as Tubulin Targeting Agents. J. Med. Chem. 53, 8569-8584. Kushkuley et al., 2009. Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules. J Cell Sci. 122, 3579-86. Chen et al., 2005. A-432411, a novel indolinone compound that disrupts spindle pole formation and inhibits human cancer cell growth. Mol. Cancer Ther. 4, 562-568. Huang et al., 2005. CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line. J. Biol. Chem. 280, 2771-2779. Rouzier et al., 2005. Microtubule-associated protein tau: A marker of paclitaxel sensitivity in breast cancer. Proc. Natl. Acad. Sci. U.S.A. 102, 8315-8320. Jiang et al., 2002. Double blockade of cell cycle at G1-S transition and M phase by 3-iodoacetamido benzoyl ethyl ester, a new type of tubulin ligand. Cancer Res. 62, 6080-6088. Mooberry et al., 1999. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 59, 653-660.

Faqs

Question 1: How does general tubulin buffer differ from G-PEM buffer?

Answer 1: Basically, these buffers are the same except that G-PEM contains 1mM GTP to support tubulin polymerization. General tubulin buffer (Cat. # BST01) and PEM buffer typically contain 80 mM PIPES, 2 mM MgCl2, 0.5 mM EGTA pH 7.0. Both buffers should be supplemented with 1 mM GTP (hence, the “G” in G-PEM buffer).

Question 2: Is glycerol necessary for the maintenance of biologically-active tubulin?

Answer 2: Glycerol is often added to a final concentration of 5 - 10% to enhance polymerization; however, glycerol is not necessary for the maintenance of biologically active tubulin.

If you have any questions concerning this product, please contact our Technical Service department at tservice@cytoskeleton.com

新闻动态
行业前沿
技术文章
最新产品