Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
...gene expression analysis of laser microdissected tissue...188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线

...gene expression analysis of laser microdissected tissue...

AbstractQuantitative reverse transcription-polymerase chain reaction (qRT-PCR) is a valuable tool for measuring gene expression in biological samples. However, unique challenges are encountered when studies are performed on cells microdissected from tissues derived from animal models or the clinic, including specimen-related issues, variability of RNA template quality and quantity, and normalization. qRT-PCR using small amounts of mRNA derived from dissected cell populations requires adaptation of standard methods to allow meaningful comparisons across sample sets. The protocol described here presents the rationale, technical steps, normalization strategy and data analysis necessary to generate reliable gene expression measurements of transcripts from dissected samples. The entire protocol from tissue microdissection through qRT-PCR analysis requires 鈭?/span>16 h. Subscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comRent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices. Figure 1: Tissue sectioning and staining flowchart.Figure 2: Frozen prostate epithelium laser capture microdissection (LCM) procurement sequence.Figure 3: qRT-PCR from microdissected tissue process flowchart.Figure 4: Dedicated RT-PCR hood setup.Figure 5: Example qPCR 96-well setup.Figure 6: Typical TaqMan qPCR amplification plots for 96-well setup. References1Best, C.J. et al. Molecular differentiation of high- and moderate-grade human prostate cancer by cDNA microarray analysis. Diagn. Mol. Pathol. 12, 63鈥?0 (2003).Article聽 CAS聽Google Scholar聽 2Best, C.J. et al. Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin. Cancer Res. 11, 6823鈥?834 (2005).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 3Best, C.J. Emmert-Buck, M.R. Molecular profiling of tissue samples using laser capture microdissection. Expert Rev. Mol. Diagn. 1, 53鈥?0 (2001).Article聽 CAS聽Google Scholar聽 4Richardson, A.M. et al. Global expression analysis of prostate cancer-associated stroma and epithelia. Diagn. Mol. Pathol. 16, 189鈥?97 (2007).Article聽 CAS聽Google Scholar聽 5Wiese, A.H. et al. Identification of gene signatures for invasive colorectal tumor cells. Cancer Detect. Prev. 31, 282鈥?95 (2007).Article聽 CAS聽Google Scholar聽 6Lee, S. et al. Alterations of gene expression in the development of early hyperplastic precursors of breast cancer. Am. J. Pathol. 171, 252鈥?62 (2007).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 7Turashvili, G. et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7, 55 (2007).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 8Jaeger, J. et al. Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin. Cancer Res. 13, 806鈥?15 (2007).Article聽 CAS聽Google Scholar聽 9Sunde, J.S. et al. Expression profiling identifies altered expression of genes that contribute to the inhibition of transforming growth factor-beta signaling in ovarian cancer. Cancer Res. 66, 8404鈥?412 (2006).Article聽 CAS聽 PubMed聽Google Scholar聽 10Dahl, E. et al. Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin. Cancer Res. 12, 3950鈥?960 (2006).Article聽 CAS聽Google Scholar聽 11Tsai, M.F. et al. A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J. Natl. Cancer Inst. 98, 825鈥?38 (2006).Article聽 CAS聽Google Scholar聽 12Scott, M. et al. Altered patterns of transcription of the septin gene, SEPT9, in ovarian tumorigenesis. Int. J. Cancer 118, 1325鈥?329 (2006).Article聽 CAS聽Google Scholar聽 13Luzzi, V.I., Holtschlag, V. Watson, M.A. Gene expression profiling of primary tumor cell populations using laser capture microdissection, RNA transcript amplification, and GeneChip microarrays. Methods Mol. Biol. 293, 187鈥?07 (2005).CAS聽 PubMed聽Google Scholar聽 14Yao, F. et al. Microarray analysis of fluoro-gold labeled rat dopamine neurons harvested by laser capture microdissection. J. Neurosci. Methods 143, 95鈥?06 (2005).Article聽 CAS聽Google Scholar聽 15Chan, S. et al. The use of laser capture microdissection (LCM) and quantitative polymerase chain reaction to define thyroid hormone receptor expression in human term\' placenta. Placenta 25, 758鈥?62 (2004).Article聽 CAS聽Google Scholar聽 16Erickson, H.S. et al. Assessment of normalization strategies for quantitative RT-PCR using microdissected tissue samples. Lab. Invest. 87, 951鈥?62 (2007).Article聽 CAS聽Google Scholar聽 17Ransohoff, D.F. Lessons from controversy: ovarian cancer screening and serum proteomics. J. Natl. Cancer Inst. 97, 315鈥?19 (2005).Article聽 CAS聽Google Scholar聽 18Ransohoff, D.F. Bias as a threat to the validity of cancer molecular-marker research. Nat. Rev. Cancer 5, 142鈥?49 (2005).Article聽 CAS聽Google Scholar聽 19Ransohoff, D.F. Rules of evidence for cancer molecular-marker discovery and validation. Nat. Rev. Cancer 4, 309鈥?14 (2004).Article聽 CAS聽Google Scholar聽 20Ransohoff, D.F., McNaughton Collins, M. Fowler, F.J. Why is prostate cancer screening so common when the evidence is so uncertain? A system without negative feedback. Am. J. Med. 113, 663鈥?67 (2002).Article聽Google Scholar聽 21Twombly, R. Identity crisis: finding, defining, and integrating biomarkers still a challenge. J. Natl. Cancer Inst. 98, 11鈥?2 (2006).Article聽Google Scholar聽 22Compton, C. Getting to personalized cancer medicine: taking out the garbage. Cancer 110, 1641鈥?643 (2007).Article聽Google Scholar聽 23Vaught, J.B. Biorepository and biospecimen science: a new focus for CEBP. Cancer Epidemiol. Biomarkers Prev. 15, 1572鈥?573 (2006).Article聽Google Scholar聽 24Lin, D.W. et al. Influence of surgical manipulation on prostate gene expression: implications for molecular correlates of treatment effects and disease prognosis. J. Clin. Oncol. 24, 3763鈥?770 (2006).Article聽 CAS聽Google Scholar聽 25Micke, P. et al. Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab. Invest. 86, 202鈥?11 (2006).Article聽 CAS聽Google Scholar聽 26Bova, G.S. et al. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications. Mol. Biotechnol. 29, 119鈥?52 (2005).Article聽 CAS聽Google Scholar聽 27Gillespie, J.W. et al. Molecular profiling of cancer. Toxicol. Pathol. 32 (Suppl 1): 67鈥?1 (2004).Article聽 CAS聽Google Scholar聽 28Ahram, M. et al. Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3, 413鈥?21 (2003).Article聽 CAS聽Google Scholar聽 29Perlmutter, M.A. et al. Comparison of snap freezing versus ethanol fixation for gene expression profiling of tissue specimens. J. Mol. Diagn. 6, 371鈥?77 (2004).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 30Leiva, I.M., Emmert-Buck, M.R. Gillespie, J.W. Handling of clinical tissue specimens for molecular profiling studies. Curr. Issues Mol. Biol. 5, 27 (2003).CAS聽 PubMed聽Google Scholar聽 31Chuaqui, R.F. et al. Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 32 (Suppl): 509鈥?14 (2002).Article聽 CAS聽Google Scholar聽 32Gillespie, J.W. et al. Evaluation of non-formalin tissue fixation for molecular profiling studies. Am. J. Pathol. 160, 449鈥?57 (2002).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 33Emmert-Buck, M.R. et al. Molecular profiling of clinical tissues specimens: feasibility and applications. J. Mol. Diagn. 2, 60鈥?6 (2000).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 34Ellem, K.A. Colter, J.S. A consideration of the ribonucleic acid depolymerase-inhibitor systems of mouse tissues. J. Cell. Comp. Physiol. 58, 267鈥?76 (1961).Article聽 CAS聽Google Scholar聽 35Erickson, H.S., Gillespie, J.W. Emmert-Buck, M.R. Tissue microdissection. In Methods Mol. Biol. 424 (ed. Posch, A.) 433鈥?48 (Humana Press, Totowa, NJ, 2008). Google Scholar聽 36Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586鈥?03 (2006).Article聽 CAS聽Google Scholar聽 37Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998鈥?001 (1996).Article聽 CAS聽 PubMed聽Google Scholar聽 38Bonner, R.F. et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481,1483 (1997).Article聽Google Scholar聽 39Okuducu, A.F. et al. Influence of histochemical stains on quantitative gene expression analysis after laser-assisted microdissection. Int. J. Mol. Med. 11, 449鈥?53 (2003).CAS聽 PubMed聽Google Scholar聽 40Rubin, M.A. Tech.Sight. Understanding disease cell by cell. Science 296, 1329鈥?330 (2002).Article聽 CAS聽Google Scholar聽 41Radstrom, P. et al. Pre-PCR processing: strategies to generate PCR-compatible samples. Mol. Biotechnol. 26, 133鈥?46 (2004).Article聽Google Scholar聽 42Lefevre, J. et al. Prevalence of selective inhibition of HPV-16 DNA amplification in cervicovaginal lavages. J. Med. Virol. 72, 132鈥?37 (2004).Article聽 CAS聽Google Scholar聽 43Sunen, E. et al. Comparison of two methods for the detection of hepatitis A virus in clam samples (Tapes spp.) by reverse transcription-nested PCR. Int. J. Food Microbiol. 91, 147鈥?54 (2004).Article聽 CAS聽Google Scholar聽 44Perch-Nielsen, I.R. et al. Removal of PCR inhibitors using dielectrophoresis as a selective filter in a microsystem. Lab Chip 3, 212鈥?16 (2003).Article聽 CAS聽Google Scholar聽 45Jiang, J. et al. Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl. Environ. Microbiol. 71, 1135鈥?141 (2005).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 46Guy, R.A. et al. Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl. Environ. Microbiol. 69, 5178鈥?185 (2003).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 47Bustin, S.A. Nolan, T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15, 155鈥?66 (2004).PubMed聽 PubMed Central聽Google Scholar聽 48Nolan, T., Hands, R.E. Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559鈥?582 (2006).Article聽 CAS聽 PubMed聽Google Scholar聽 49Morrison, T.B., Weis, J.J. Wittwer, C.T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24, 954鈥?58, 960, 962 (1998).CAS聽Google Scholar聽 50Fleige, S. Pfaffl, M.W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 27, 126鈥?39 (2006).Article聽 CAS聽Google Scholar聽 51Hilscher, C., Vahrson, W. Dittmer, D.P. Faster quantitative real-time PCR protocols may lose sensitivity and show increased variability. Nucleic Acids Res. 33, e182 (2005).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 52Stanley, K.K. Szewczuk, E. Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR Green detection. Nucleic Acids Res. 33, e180 (2005).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 53Suslov, O. Steindler, D.A. PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res. 33, e181 (2005).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 54Stahlberg, A. et al. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 50, 509鈥?15 (2004).Article聽 CAS聽Google Scholar聽 55Stahlberg, A., Kubista, M. Pfaffl, M. Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 50, 1678鈥?680 (2004).Article聽 CAS聽Google Scholar聽 56Lewis, F. Maughan, N.J. Extraction of Total RNA from Formalin-Fixed Paraffin-Embedded Tissue (IUL Press, La Jolla, California, 2004). Google Scholar聽 57Lekanne Deprez, R.H. et al. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal. Biochem. 307, 63鈥?9 (2002).Article聽 CAS聽Google Scholar聽 58Vandesompele, J., De Paepe, A. Speleman, F. Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal. Biochem. 303, 95鈥?8 (2002).Article聽 CAS聽 PubMed聽Google Scholar聽 59Simon, R. et al. Design and Analysis of DNA Microarray Investigations (Springer, New York, 2004). Google Scholar聽 60Murphy, R.M. et al. Effects of creatine supplementation on housekeeping genes in human skeletal muscle using real-time RT-PCR. Physiol. Genomics 12, 163鈥?74 (2003).Article聽 CAS聽Google Scholar聽 61Khimani, A.H. et al. Housekeeping genes in cancer: normalization of array data. Biotechniques 38, 739鈥?45 (2005).Article聽 CAS聽Google Scholar聽 62Warrington, J.A. et al. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol. Genomics 2, 143鈥?47 (2000).Article聽 CAS聽Google Scholar聽 63Ross, D.T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227鈥?35 (2000).Article聽 CAS聽Google Scholar聽 64Thellin, O. et al. Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75, 291鈥?95 (1999).Article聽 CAS聽Google Scholar聽 65Suzuki, T., Higgins, P.J. Crawford, D.R. Control selection for RNA quantitation. Biotechniques 29, 332鈥?37 (2000).Article聽 CAS聽Google Scholar聽 66Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169鈥?93 (2000).Article聽 CAS聽Google Scholar聽 67Aerts, J.L., Gonzales, M.I. Topalian, S.L. Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. Biotechniques 36, 84鈥?6, 88, 90鈥?1 (2004).Article聽 CAS聽Google Scholar聽 68Biederman, J., Yee, J. Cortes, P. Validation of internal control genes for gene expression analysis in diabetic glomerulosclerosis. Kidney Int. 66, 2308鈥?314 (2004).Article聽 CAS聽Google Scholar聽 69Tsuji, N. et al. Selection of an internal control gene for quantitation of mRNA in colonic tissues. Anticancer Res. 22, 4173鈥?178 (2002).CAS聽 PubMed聽Google Scholar聽 70Gorzelniak, K. et al. Validation of endogenous controls for gene expression studies in human adipocytes and preadipocytes. Horm. Metab. Res. 33, 625鈥?27 (2001).Article聽 CAS聽Google Scholar聽 71Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 34 (2002).Article聽Google Scholar聽 72Mamo, S. et al. Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro . BMC Dev. Biol. 7, 14 (2007).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 73Mahoney, D.J. et al. Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol. Genomics 18, 226鈥?31 (2004).Article聽 CAS聽Google Scholar聽 74Pogue-Geile, K.L. Greenberger, J.S. Effect of the irradiated microenvironment on the expression and retrotransposition of intracisternal type A particles in hematopoietic cells. Exp. Hematol. 28, 680鈥?89 (2000).Article聽 CAS聽Google Scholar聽 75Barnard, G.F. et al. Increased expression of human ribosomal phosphoprotein P0 messenger RNA in hepatocellular carcinoma and colon carcinoma. Cancer Res. 52, 3067鈥?072 (1992).CAS聽 PubMed聽Google Scholar聽 76Henry, J.L., Coggin, D.L. King, C.R. High-level expression of the ribosomal protein L19 in human breast tumors that overexpress erbB-2. Cancer Res. 53, 1403鈥?408 (1993).CAS聽 PubMed聽Google Scholar聽 77Vaarala, M.H. et al. Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. Int. J. Cancer 78, 27鈥?2 (1998).Article聽 CAS聽Google Scholar聽 78Xu, L.L. et al. Quantitative expression profile of PSGR in prostate cancer. Prostate Cancer Prostatic Dis. 9, 56鈥?1 (2006).Article聽 CAS聽Google Scholar聽 79Morrison, T. et al. Nanoliter high throughput quantitative PCR. Nucleic Acids Res. 34, e123 (2006).Article聽 PubMed聽 PubMed Central聽Google Scholar聽 80Fink, L. et al. Real-time quantitative RT-PCR after laser-assisted cell picking. Nat. Med. 4, 1329鈥?333 (1998).Article聽 CAS聽Google Scholar聽 81Tsai, W.J. et al. Real-time PCR quantification using cloned standards and multiple housekeeping genes. Protocol Online. http://www.protocol-online.org/prot/Protocols/Real-Time-PCR-Quantification-Using-Cloned-Standards-and-Multiple-Housekeeping-Genes-3467.html (2009).82Canales, R.D. et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24, 1115鈥?122 (2006).Article聽 CAS聽Google Scholar聽 83Schmid, H. et al. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int. 64, 356鈥?60 (2003).Article聽 CAS聽Google Scholar聽 84Cohen, C.D. et al. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 61, 133鈥?40 (2002).Article聽 CAS聽Google Scholar聽 85Livak, K.J. Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402鈥?08 (2001).Article聽 CAS聽 PubMed聽 PubMed Central聽Google Scholar聽 86Guidi, C.J. et al. Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis. Cancer Res. 66, 8076鈥?082 (2006).Article聽 CAS聽Google Scholar聽 87King, T.A. et al. Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis. Ann. Surg. Oncol. 14, 2510鈥?518 (2007).Article聽Google Scholar聽 Download referencesAcknowledgementsThe authors appreciatively thank S. Gonzalez and A. Velasco (The Catholic University, Santiago, Chile) for their collaboration in providing the frozen prostate whole-mount tissue blocks used to assess normalization strategies. R.F.C. and M.R.E.-B. are Federal employee inventors on NIH patents covering LCM and xMD technologies and are entitled to receive royalty payments through the NIH Technology Transfer program. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.Author informationAffiliationsPathogenetics Unit, Laboratory of Pathology and Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USAHeidi S Erickson,聽Jaime Rodriguez-Canales,聽Rodrigo F Chuaqui聽 聽Michael R Emmert-BuckDivision of Cancer Treatment and Diagnosis, Biometric Research Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USAPaul S Albert SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland, USA John W GillespieUrologic Oncology Branch, National Cancer Institute, National Institutes of Health, Maryland, USAW Marston Linehan聽 聽Peter A PintoAuthorsHeidi S EricksonView author publicationsYou can also search for this author in PubMed聽Google ScholarPaul S AlbertView author publicationsYou can also search for this author in PubMed聽Google ScholarJohn W GillespieView author publicationsYou can also search for this author in PubMed聽Google ScholarJaime Rodriguez-CanalesView author publicationsYou can also search for this author in PubMed聽Google ScholarW Marston LinehanView author publicationsYou can also search for this author in PubMed聽Google ScholarPeter A PintoView author publicationsYou can also search for this author in PubMed聽Google ScholarRodrigo F ChuaquiView author publicationsYou can also search for this author in PubMed聽Google ScholarMichael R Emmert-BuckView author publicationsYou can also search for this author in PubMed聽Google ScholarCorresponding authorCorrespondence to Michael R Emmert-Buck.Rights and permissionsReprints and PermissionsAbout this articleCite this articleErickson, H., Albert, P., Gillespie, J. et al. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat Protoc 4, 902鈥?22 (2009). https://doi.org/10.1038/nprot.2009.61Download citationPublished: 21 May 2009Issue Date: June 2009DOI: https://doi.org/10.1038/nprot.2009.61 Xiaofei Liu, Yu Zheng, Gefu Wang-Pruski, Yun Gan, Bo Zhang, Qiyong Hu, Yixin Du, Jianwei Zhao Lihua Liu European Journal of Plant Pathology (2019) Parisa Amini, Julia Ettlin, Lennart Opitz, Elena Clementi, Alexandra Malbon Enni Markkanen BMC Molecular Biology (2017) Elisabeth Letellier, Martine Schmitz, Aur茅lien Ginolhac, Fabien Rodriguez, Pit Ullmann, Komal Qureshi-Baig, Sonia Frasquilho, Laurent Antunes Serge Haan British Journal of Cancer (2017) CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. Sign up for the Nature Briefing newsletter 鈥?what matters in science, free to your inbox daily.

新闻动态
行业前沿
技术文章
最新产品

188进口试剂采购网 www.188bio.cn -中国试剂网,试剂网,化学试剂网,国药试剂,抗体公司,试剂公司,试剂盒公司,苏州试剂公司,北京化学试剂公司,天津化学试剂,试剂商城,试剂代理,流式抗体 细胞库查询 sitemap