Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
Megazyme/Glucomannan (Konjac; Low Viscosity)/P-GLCML/4 grams188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线

Megazyme/Glucomannan (Konjac; Low Viscosity)/P-GLCML/4 grams

High purity Glucomannan (Konjac; Low Viscosity) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Purity > 98%. Glucose: Mannose = 40: 60. Acetylated. Viscosity ~ 2 cSt.

Alkaline hydrogen peroxide pretreatment of softwood: Hemicellulose degradation pathways.

Alvarez-Vasco, C. & Zhang, X. (2013). Bioresource Technology, 150, 321-327. Link to Article Read Abstract This study investigated softwood hemicelluloses degradation pathways during alkaline hydrogen peroxide (AHP) pretreatment of Douglas fir. It was found that glucomannan is much more susceptible to alkaline pretreatment than xylan. Organic acids, including lactic, succinic, glycolic and formic acid are the predominant products from glucomannan degradation. At low treatment temperature (90°C), a small amount of formic acid is produced from glucomannan, whereas glucomannan degradation to lactic acid and succinic acid becomes the main reactions at 140°C and 180°C. The addition of H2O2 during alkaline pretreatment of D. fir led to a significant removal of lignin, which subsequently facilitated glucomannan solubilization. However, H2O2 has little direct effect on the glucomannan degradation reaction. The main degradation pathways involved in glucomannan conversion to organics acids are elucidated. The results from this study demonstrate the potential to optimize pretreatment conditions to maximize the value of biomass hemicellulose.

A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.

Park, Y. B. & Cosgrove, D. J. (2012). Plant Physiology, 158(4), 1933-1943. Link to Article Read Abstract Xyloglucan is widely believed to function as a tether between cellulose microfibrils in the primary cell wall, limiting cell enlargement by restricting the ability of microfibrils to separate laterally. To test the biomechanical predictions of this \"tethered network” model, we assessed the ability of cucumber (Cucumis sativus) hypocotyl walls to undergo creep (long-term, irreversible extension) in response to three family-12 endo-β-1,4-glucanases that can specifically hydrolyze xyloglucan, cellulose, or both. Xyloglucan-specific endoglucanase (XEG from Aspergillus aculeatus) failed to induce cell wall creep, whereas an endoglucanase that hydrolyzes both xyloglucan and cellulose (Cel12A from Hypocrea jecorina) induced a high creep rate. A cellulose-specific endoglucanase (CEG from Aspergillus niger) did not cause cell wall creep, either by itself or in combination with XEG. Tests with additional enzymes, including a family-5 endoglucanase, confirmed the conclusion that to cause creep, endoglucanases must cut both xyloglucan and cellulose. Similar results were obtained with measurements of elastic and plastic compliance. Both XEG and Cel12A hydrolyzed xyloglucan in intact walls, but Cel12A could hydrolyze a minor xyloglucan compartment recalcitrant to XEG digestion. Xyloglucan involvement in these enzyme responses was confirmed by experiments with Arabidopsis (Arabidopsis thaliana) hypocotyls, where Cel12A induced creep in wild-type but not in xyloglucan-deficient (xxt1/xxt2) walls. Our results are incompatible with the common depiction of xyloglucan as a load-bearing tether spanning the 20- to 40-nm spacing between cellulose microfibrils, but they do implicate a minor xyloglucan component in wall mechanics. The structurally important xyloglucan may be located in limited regions of tight contact between microfibrils.

Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch.

Chua, M., Chan, K., Hocking, T. J., Williams, P. A., Perry, C. J. & Baldwin, T. C. (2012). Carbohydrate Polymers, 87(3), 2202-2210. Link to Article Read Abstract Here we present a comparison of commonly used methodologies for the extraction and quantification of konjac glucomannan (KGM). Compositional analysis showed that the purified konjac flour (PKF) produced using a modified extraction procedure contained 92% glucomannan, with a weight average molecular weight (Mw), polydispersity index (PDI) and degree of acetylation (DA) of 9.5 ± 0.6 × 105 g mol-1, 1.2 and 2.8 wt.%. These data, plus Fourier-transform infrared spectral (FTIR) and zero shear viscosity analyses of the extract (PKF) were all consistent with the literature. Comparison of three existing methodologies for the quantitative analysis of the KGM content of the PKF, namely 3,5-dinitrosalicylic acid (3,5-DNS), phenol–sulphuric acid and enzymatic colorimetric assays; indicated that the 3,5-DNS colorimetric assay was the most reproducible and accurate method, with a linear correlation coefficient of 0.997 for samples ranging from 0.5 to 12.5 mg/ml, and recoveries between 97% and 103% across three spiking levels (250, 500 and 750 μg/g) of starch. These data provide the basis of improved good laboratory practice (GLP) for the commercial extraction and analysis of this multifunctional natural polymer.

Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01.

Bien-Cuong, D., Thi-Thu, D., Berrin, J. G., Haltrich, D., Kim-Anh, T., Sigoillot, J. C. & Yamabhai, M. (2009). Microbial Cell Factories, 8(1), 59. Link to Article Read Abstract Background: Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-β-mannosidases (1,4-β-D-mannanases) catalyze the random hydrolysis of β-1,4-mannosidic linkages in the main chain of β-mannans. Biodegradation of β-mannans by the action of thermostable mannan endo-1,4-β-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS). Results: A gene encoding mannan endo-1,4-β-mannosidase or 1,4-β-D-mannan mannanohydrolase (E.C. 3.2.1.78), commonly termed β-mannanase, from Aspergillus niger BK01, which belongs to glycosyl hydrolase family 5 (GH5), was cloned and successfully expressed heterologously (up to 243 μg of active recombinant protein per mL) in Pichia pastoris. The enzyme was secreted by P. pastoris and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant β-mannanase is highly thermostable with a half-life time of approximately 56 h at 70°C and pH 4.0. The optimal temperature (10-min assay) and pH value for activity are 80°C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent Km values of the enzyme for konjac glucomannan (low viscosity), locust bean gum galactomannan, carob galactomannan (low viscosity), and 1,4-β-D-mannan (from carob) are 0.6 mg mL-1, 2.0 mg mL-1, 2.2 mg mL-1 and 1.5 mg mL-1, respectively, while the Kcat values for these substrates are 215 s-1, 330 s-1, 292 s-1 and 148 s-1 respectively. Judged from the specificity constants Kcat/Km, glucomannan is the preferred substrate of the A. niger β-mannanase. Analysis by thin layer chromatography showed that the main product from enzymatic hydrolysis of locust bean gum is mannobiose, with only low amounts of mannotriose and higher manno-oligosaccharides formed. Conclusion: This study is the first report on the cloning and expression of a thermostable mannan endo-1,4-β-mannosidase from A. niger in Pichia pastoris. The efficient expression and ease of purification will significantly decrease the production costs of this enzyme. Taking advantage of its acidic pH optimum and high thermostability, this recombinant β-mannanase will be valuable in various biotechnological applications.

Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-β-mannosidase from Bacillus licheniformis in Escherichia coli.

Songsiriritthigul, C., Buranabanyat, B., Haltrich, D. & Yamabhai, M. (2010). Microbial Cell Factories, 9(1), 20. Link to Article Read Abstract Background: Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-β-mannosidase or 1,4-β-D-mannanase (EC 3.2.1.78), commonly named β-mannanase, is an enzyme that can catalyze random hydrolysis of β-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-β-mannosidase gene (manB) from B. licheniformis. Results: The mannan endo-1,4-β-mannosidase gene (manB), commonly known as β-mannanase, from Bacillus licheniformis strain DSM13 was cloned and overexpressed in Escherichia coli. The enzyme can be harvested from the cell lysate, periplasmic extract, or culture supernatant when using the pFLAG expression system. A total activity of approximately 50,000 units could be obtained from 1-l shake flask cultures. The recombinant enzyme was 6 × His-tagged at its C-terminus, and could be purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The specific activity of the purified enzyme when using locust bean gum as substrate was 1672 ± 96 units/mg. The optimal pH of the enzyme was between pH 6.0-7.0; whereas the optimal temperature was at 50-60°C. The recombinant β-mannanase was stable within pH 5-12 after incubation for 30 min at 50°C, and within pH 6-9 after incubation at 50°C for 24 h. The enzyme was stable at temperatures up to 50°C with a half-life time of activity (τ1/2) of approximately 80 h at 50°C and pH 6.0. Analysis of hydrolytic products by thin layer chromatography revealed that the main products from the bioconversion of locus bean gum and mannan were various manno-oligosaccharide products (M2-M6) and mannose. Conclusion: Our study demonstrates an efficient expression and secretion system for the production of a relatively thermo- and alkali-stable recombinant β-mannanase from B. licheniformis strain DSM13, suitable for various biotechnological applications.

Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase.

Mizutani, K., Fernandes, V. O., Karita, S., Luís, A. S., Sakka, M., Kimura, T., Jackson, A., Zhang, X., Fontes, C. M. G. A., Gilbert, H. J. & Sakka, K. (2012). Applied and Environmental Microbiology, 78(14), 4781-4787. Link to Article Read Abstract In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal signal peptide, a family 5 glycoside hydrolase (GH5) catalytic module, a family 32 CBM (CBM32), and a C-terminal type I dockerin module. Recent proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of Cthe_0821 displays endomannanase activity. C. thermocellum Man5A hydrolyzes soluble konjac glucomannan, soluble carob galactomannan, and insoluble ivory nut mannan but does not attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers unsubstituted β-1,4-mannoside linkages. The CBM32 of C. thermocellum Man5A displays a preference for the nonreducing ends of mannooligosaccharides, although the protein module exhibits measurable affinity for the termini of β-1,4-linked glucooligosaccharides such as cellobiose. CBM32 potentiates the activity of C. thermocellum Man5A against insoluble mannans but has no significant effect on the capacity of the enzyme to hydrolyze soluble galactomannans and glucomannans. The product profile of C. thermocellum Man5A is affected by the presence of CBM32.

Structural and Thermodynamic Dissection of Specific Mannan Recognition by a Carbohydrate Binding Module, TmCBM27.

Boraston, A. B., Revett, T. J., Boraston, C. M., Nurizzo, D. & Davies, G. J. (2003). Structure, 11(6), 665-675. Link to Article Read Abstract The C-terminal 176 amino acids of a Thermotoga maritima mannanase (Man5) constitute a carbohydrate binding module (CBM) that has been classified into CBM family 27. The isolated CBM27 domain, named TmCBM27, binds tightly (Kas 105–106, M-1) to β-1,4-mannooligosaccharides, carob galactomannan, and konjac glucomannan, but not to cellulose (insoluble and soluble) or soluble birchwood xylan. The X-ray crystal structures of native TmCBM27, a TmCBM27-mannohexaose complex, and a TmCBM27-63,64,-α-D-galactosyl-mannopentaose complex at 2.0 Å, 1.6 Å, and 1.35 Å, respectively, reveal the basis of TmCBM27s specificity for mannans. In particular, the latter complex, which is the first structure of a CBM in complex with a branched plant cell wall polysaccharide, illustrates how the architecture of the binding site can influence the recognition of naturally substituted polysaccharides.

Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants.

Schröder, R., Wegrzyn, T. F., Bolitho, K. M. & Redgwell, R. J. (2004). Planta, 219(4), 590-600. Link to Article Read Abstract Mannan transglycosylase is a novel cell wall enzyme activity acting on mannan-based plant polysaccharides in primary cell walls of monocotyledons and dicotyledons. The enzyme activity was detected by its ability to transfer galactoglucomannan (GGM) polysaccharides to tritium-labelled GGM-derived oligosaccharides generating tritium-labelled GGM polysaccharides. Mannan transglycosylase was found in a range of plant species and tissues. High levels of the enzyme activity were present in flowers of some kiwifruit (Actinidia) species and in ripe tomato (Solanum lycopersicum L.) fruit. Low levels were detected in mature green tomato fruit and activity increased during tomato fruit ripening up to the red ripe stage. Essentially all activity was found in the tomato skin and outermost 2 mm of tissue. Mannan transglycosylase activity in tomato skin and outer pericarp is specific for mannan-based plant polysaccharides, including GGM, galactomannan, glucomannan and mannan. The exact structural requirements for valid acceptors remain to be defined. Nevertheless, a mannose residue at the second position of the sugar chain and the absence of a galactose substituent on the fourth residue (counting from the non-reducing end) appear to be minimal requirements. Mannan-based polysaccharides in the plant cell wall may have a role analogous to that of xyloglucans, introducing flexibility and forming growth-restraining networks with cellulose. Thus mannan transglycosylase and xyloglucan endotransglycosylase, the only other known transglycosylase activity in plant cell walls, may both be involved in remodelling and refining the cellulose framework in developmental processes throughout the life of a plant.

Xyloglucans of monocotyledons have diverse structures.

Hsieh, Y. S. & Harris, P. J. (2009). Molecular Plant, 2(5), 943-965. Link to Article Read Abstract Except in the Poaceae, little is known about the structures of the xyloglucans in the primary walls of monocotyledons. Xyloglucan structures in a range of monocotyledon species were examined. Wall preparations were isolated, extracted with 6 M sodium hydroxide, and the extracts treated with a xyloglucan-specific endo-(1→4)-β-glucanase preparation. The oligosaccharides released were analyzed by high-performance anion-exchange chromatography and by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Oligosaccharide profiles of the non-commelinid monocotyledons were similar to those of most eudicotyledons, indicating the xyloglucans were fucogalactoxyloglucans, with a XXXG a core motif and the fucosylated units XXFG and XLFG. An exception was Lemna minor (Araceae), which yielded no fucosylated oligosaccharides and had both XXXG and XXGn core motifs. Except for the Arecales (palms) and the Dasypogonaceae, which had fucogalactoxyloglucans, the xyloglucans of the commelinid monocotyledons were structurally different. The Zingiberales and Commelinales had xyloglucans with both XXGn and XXXG core motifs; small proportions of XXFG units, but no XLFG units, were present. In the Poales, the Poaceae had xyloglucans with a XXGn core motif and no fucosylated units. In the other Poales families, some had both XXXG and XXGn core motifs, others had only XXXG; XXFG units were present, but XLFG units were not.

Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata.

Brennan, M., McLean, J. P., Altaner, C. M., Ralph, J. & Harris, P. J. (2012). Cellulose, 19(4), 1385-1404. Link to Article Read Abstract Four corewood types were examined from sapling trees of two clones of Pinus radiata grown in a glasshouse. Trees were grown either straight to produce normal corewood, tilted at 45° from the vertical to produce opposite corewood and compression corewood, or rocked to produce flexure corewood. Mean cellulose microfibril angle of tracheid walls was estimated by X-ray diffraction and longitudinal swelling measured between an oven dry and moisture saturated state. Lignin and acetyl contents of the woods were measured and the monosaccharide compositions of the cell-wall polysaccharides determined. Finely milled wood was analysed using solution-state 2D NMR spectroscopy of gels from finely milled wood in DMSO-d6/pyridine-d5. Although there was no significant difference in cellulose microfibril angle among the corewood types, compression corewood had the highest longitudinal swelling. A lignin content >32% and a galactosyl residue content >6% clearly divided severe compression corewood from the other corewood types. Relationships could be drawn between lignin content and longitudinal swelling, and between galactosyl residue content and longitudinal swelling. The 2D NMR spectra showed that the presence of H-units in lignin was exclusive to compression corewood, which also had a higher (1→4)-β-D-galactan content, defining a unique composition for that corewood type.

Divalent toxoids loaded stable chitosan–glucomannan nanoassemblies for efficient systemic, mucosal and cellular immunostimulatory response following oral administration.

Harde, H., Siddhapura, K., Agrawal, A. K. & Jain, S. (2015). International Journal of Pharmaceutics, 487(1), 292-304. Link to Article Read Abstract The present study reports dual tetanus and diphtheria toxoids loaded stable chitosan–glucomannan nanoassemblies (sCh–GM-NAs) formulated using tandem ionic gelation technique for oral mucosal immunization. The stable, lyophilized sCh–GM-NAs exhibited ~152 nm particle size and ~85% EE of both the toxoids. The lyophilized sCh–GM-NAs displayed excellent stability in biomimetic media and preserved chemical, conformation and biological stability of encapsulated toxoids. The higher intracellular APCs uptake of sCh–GM-NAs was concentration and time dependent which may be attributed to the receptor mediated endocytosis via mannose and glucose receptor. The higher Caco-2 uptake of sCh–GM-NAs was further confirmed by ex vivo intestinal uptake studies. The in vivo evaluation revealed that sCh–GM-NAs posed significantly (p

新闻动态
行业前沿
技术文章
最新产品

188进口试剂采购网 www.188bio.cn -中国试剂网,试剂网,化学试剂网,国药试剂,抗体公司,试剂公司,试剂盒公司,苏州试剂公司,北京化学试剂公司,天津化学试剂,试剂商城,试剂代理,流式抗体 细胞库查询 sitemap