Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
Cell Technology/MitoCasp/25/MITCAP188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线
产品资料

Cell Technology/MitoCasp/25/MITCAP

  • Description
  • Additional Information
  • Readable Documents
  • Assay Principle
  • Reviews

Key Benefits

  • Simultaneous detection of mitochondrial membrane potential and caspase activity.
  • Readout – Flow cytometry, Fluorescent plate reader, Fluorescent microscopy .
  • Reliable: Yields both quantitative and qualitative results. Gives a strong positive signal.
  • The kit can be used in conjunction with other antibodies or stains.
  • Ease Of Use: No need to make cell lysates or run western blots.
  • Cell Permeable Reagents.

Additional information

Kit Size

25, 100

Caspase

Poly Caspase, Caspase 3/7, Caspase 8, Caspase 9, Caspase 1

Caspase (poly, 3/7, 8, 9, 1) & Mitochondria Membrane Potential Detection – MitoCasp

Caspase enzymes specifically recognize a 4 amino acid sequence (on their substrate) which necessarily includes an aspartic acid residue. This residue is the target for the cleavage reaction, which occurs at the carbonyl end of the aspartic acid residue(6). Caspases can be detected via immunoprecipitation, immuno-blotting techniques using caspase specific antibodies, or by employing fluorogenic substrates which become fluorescent upon cleavage by the caspase. MitoCasp uses a novel approach to detect active caspases (7-9). The methodology is based on carboxyfluorescein (FAM) labeled fluoromethyl ketone (FMK)-peptide inhibitors of caspases. These inhibitors are cell permeable and non-cytotoxic. Once inside the cell, the inhibitor binds covalently to the active caspase (10). Cells that contain bound inhibitor can be analyzed by flow cytometry or fluorescence microscopy.

Cell Technology utilizes a cationic dye to visualize mitochondrial membrane potential (15-17). The cationic dye is cell permeable and has a strong fluorescent signal in the red region and exhibits low membrane potential independent (non specific) binding and toxicity. In healthy cells the cationic dye is accumulated by the mitochondria in proportion to the DeltaPsi (membrane potential). In most cell lines, accumulation of the cationic dye in the mitochondria results in a higher fluorescence intensity. In apoptotic cells, where the mitochondrial membrane potential is compromised, the cationic dye does not accumulated in the mitochondria and these cells exhibit a lower fluorescence signal. Utilizing these two reagents in combination Caspase activity and mitochondrial membrane potential can be analyzed simultaneously. Citations Identification of single-domain, Bax-spec

Jurkat cells were stimulated with Staurosporine for 3 hours (B) or DMSO (A). The cells were then stained with the MitoCasp kit according to the protocol. The cells were then washed twice and analyzed by flow cytometry: Ex:488nm Em: FL1 and FL2.

mitocondril_membran_a_bFig A. Healthy cells show a strong red fluorescence indicating intact mitochondria and no green fluorescence, indicating no active caspases.

mitocondril_membran_a_b_2Fig B. Apoptotic cells show a loss of red fluorescence (y axis) indicating loss of mitochondrial membrane potential and positive green fluorescence (x axis) indicating active caspases.

Document Title
MitoCaspProtocol
MitoCasp Datasheet
msds.MitoCasp
TitleFileLinkAuthor(s)JournalYear; Edition:Pages
Selective cytotoxicity of Pancratistatin-related natural Amaryllidaceae alkaloids: evaluation of the activity of two new compoundshttp://www.cancerci.com/content/7/1/10Griffin, Sharda, Sood, Nair, et alCancer Cell IntV7 2007
OSU-03012, a Novel Celecoxib Derivative, Is Cytotoxic to Myeloma Cells and Acts through Multiple Mechanismshttp://clincancerres.aacrjournals.org/cgi/content/abstract/13/16/4750Zhang, Suvannasankha, Crean, et.alClinical Cancer Research13, pp 4750-4758, Aug 15, 2007
Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transitionhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T20-4RTM2SR-2&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ed18c5ccefa05603a620115964776eeaYoshihiro Suzuki, Toshio Inoue, Tetsuro Yoshimaru and Chisei RaBiochimica et Biophysica Acta (BBA) - Molecular Cell ResearchVol 1783, issue 5, pp 924-934, 2008
Nitric oxide protects mast cells from activation-induced cell death: the role of the phosphatidylinositol-3 kinase-Akt-endothelial nitric oxide synthase pathwayhttp://www.jleukbio.org/content/83/5/1218.shortToshio Inoue, Yoshihiro Suzuki, Tetsuro Yoshimaru and Chisei RaJournal of Leukocyte Biologyvol. 83 no. 5, pp1218-1229, 2008 doi:10.1189/jlb.1007667
Reference
Slee, E. A., C. Adrain, and S. J. Martin. 1999. Serial Killers: ordering caspase activation events in apoptosis. Cell Death and Differ. 6:1067-1074.
Walker, N. P., R. V. Talanian, K. D. Brady, L. C. Dang, N. J. Bump, C. R. Ferenz, S. Franklin, T. Ghayur, M. C. Hackett and L. D. Hammill. 1994. Crystal Structure of the Cysteine Protease Interleukin-1ß-Converting Enzyme: A (p20/p10)2 Homodimer. Cell 78:343-352.
Wilson, K. P., J. F. Black, J. A. Thomson, E. E. Kim, J. P. Griffith, M. A. Navia, M. A. Murcko, S. P. Chambers, R. A. Aldape, S. A. Raybuck, and D. J. Livingston. 1994. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370: 270-275.
Rotonda, J., D. W. Nicholson, K. M. Fazil, M. Gallant, Y. Gareau, M. Labelle, E. P. Peterson, D. M. Rasper, R. Ruel, J. P. Vaillancourt, N. A. Thornberry and J. W. Becker. 1996. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct. Biol. 3(7): 619-625.
Kumar, S. 1999. Mechanisms mediating caspase activation in cell death. Cell Death and Differ. 6: 1060-1066.
Thornberry, N. A., T. A. Rano, E. P. Peterson, D. M. Rasper, T. Timkey, M. Garcia-Calvo, V. M. Houtszager, P. A. Nordstrom, S. Roy, J. P. Vaillancourt, K. T. Chapman and D. W. Nicholson. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272(29): 17907-17911.
Amstad, P.A., G.L. Johnson, B.W. Lee and S. Dhawan. 2000. An in situ marker for the detection of activated caspases. Biotechnology Laboratory 18: 52-56.
Bedner, E., P. Smolewski, P.A. Amstad and Z. Darzynkiewicz. 2000. Activation of caspases measured in situ by binding or fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Research 259: 308-313.
Smolewski, P., E. Bedner, L. Du, T.-C. Hsieh, J. Wu, J. D. Phelps and Z. Darzynkiewicz. 2001. Detection of caspase activation by fluorochrome-labeled inhibitors: multiparameter analysis by laser scanning cytometry. Cytometry 44: 73-82.
Ekert, P. G., J. Silke and D. L. Vaux. 1999. Caspase inhibitors. Cell Death and Differ. 6:1081-1086.
Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B., and Martinou, J.C. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144 (5): 891-901 (1999).
Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R. J., Matsuda, H., and Tsujimoto, Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95: 14681-14686 (1998).
Basanez, G., Nechushtan, A., Drozhinin, O., Chanturiya, A., Choe, E., Tutt, S., Wood, K. A., Hsu, Y. T., Zimmerberg, J., and Youle, R. J. Bax , but not Bcl-XL decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc. Natl. Acad. Sci. USA 96: 5492-5497 (1999).
Luo, X., Budihardio, I., Zou, H., Slaughter, C., and Wang, X. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481-490 (1998).
Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J. 1988 May;53(5):785-94.
Farkas DL, Wei MD, Febbroriello P, Carson JH, Loew LM. Simultaneous imaging of cell and mitochondrial membrane potentials. : Biophys J. 1989 Dec;56(6):1053-69. Erratum in: Biophys J 1990 Mar;57(3):following 684.
Russell C. Scaduto, Jr. and Lee W. Grotyohann. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999 Jan;76(1 Pt 1):469-77.
Rajagopal A, Pant AC, Simon SM, Chen Y. In vivo analysis of human multidrug resistance protein 1 (MRP1) activity using transient expression of fluorescently tagged MRP1. Cancer Res. 2002 Jan 15;62(2):391-6.
Part#ReagentTemperature
Part # 4015Mitochondrial Memberane Potential Cationic Dye2-8C
Refer to Product DatasheetCaspase Detection Reagent (Poly Caspase, Caspase 3/7, Caspase 1, Caspase 8 or Caspase 9)2-8C
Part # 302810X Wash Buffer2-8C
Part # 30321X Dilution Buffer2-8C

Please select an ACF field to output

新闻动态
行业前沿
技术文章
最新产品